

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

CENTER FOR STOCHASTIC PROCESSES AD-A161

Department of Statistics University of North Carolina Chapel Hill, North Carolina

7

REAL INVERSION FORMULAS FOR LAPLACE AND STIELTJES TRANSFORMS

by

Jozef L. Teugels

Technical Report No. 111 July 1985

Approved for public release, distribution unlimited

RECURITY	CLASSIFIC	ATION OF	THIS PAGE

UNCLASSIFICATION AUTORITY 3. DECLASSIFICATION ROTOR AUTORITY 3. DECLASSIFICATION ROTOR AUTORITY 3. DECLASSIFICATION ROTOR AUTORITY 4. NAME OF PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBERIS) 6. ADDRESS ON JULY BR. APPORT NUMBERIS 6. ADDRESS ON JULY BR. APPORT NUMBERIS 6. ADDRESS ON JULY BR. APPORT NUMBERIS 6. ADDRESS ON JULY BR. APPORT 6. ADDRESS ON JULY		REPORT DOCUM	MENTATION PAGE	E			
A SECLASSIFICATION/GOWNGRADING SCHEOULE A SECLASSIFICATION/GOWNGRADING SCHEOULE LANGURING SCALAL ARTION REPORT NUMBERIS) Technical Rept. No. 111 AFOSR-TR. 2 9 4 9 NAME OF PERAFORMING GRANIZATION REPORT NUMBERIS) Center for Stochastic Processes A CORRESS CID. State and ZIP Code; Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 A NAME OF FUNDING-SPONSORING ORGANIZATION A POSS, MAR. A POSS, State and ZIP Code; A POSS, State and	A REPORT SECURITY CLASSIFICATION	16. RESTRICTIVE M	ARKINGS				
A SECLASSIFICATION/GOWNGRADING SCHEOULE A SECLASSIFICATION/GOWNGRADING SCHEOULE LANGURING SCALAL ARTION REPORT NUMBERIS) Technical Rept. No. 111 AFOSR-TR. 2 9 4 9 NAME OF PERAFORMING GRANIZATION REPORT NUMBERIS) Center for Stochastic Processes A CORRESS CID. State and ZIP Code; Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 A NAME OF FUNDING-SPONSORING ORGANIZATION A POSS, MAR. A POSS, State and ZIP Code; A POSS, State and	UNCLASSIFIED						
TRECHICAL REPT. NO. 111 AFOSR-TR. C 9 4 9 A NAME OF PERFORMING ORGANIZATION A NAME OF PERFORMING ORGANIZATION Enter for Scochastic Processes Center for Scochastic Processes Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 AFOSR NM STATISTICS Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 AFOSR NM AFOSR NM Bolling AFB C 20352-6448 AFOSR NM AFOSR NM AFOSR NM Bolling AFB C 20332 Bolling AFB C 20332 In Title Induced Security Cumumpation REAL INVERSION FORMULAS FOR LAPLACE AND STIELTIES TRANSFORM 11. SUPERIOR SECURITY COMMISSION REAL INVERSION FORMULAS FOR LAPLACE AND STIELTIES TRANSFORM 12. PERSONAL AUTHORIS 13. TIME OVERED 14. SUPERIOR OF PERFORMING ORGANIZATION AFOSR NM AFOSR NM AFOSR NM AFOSR NM AFOSR NM Blg 410 Bolling AFB C 20352-6448 15. SUPCLE OF PROCUMENT INSTRUMENT INSTRUMENT CENTRICATION NUMBER F		· 1	3. DISTRIBUTION/AVAILABILITY OF REPORT				
AFOSR-TR- 2949 ANAME OF PERFORMING ORGANIZATION SS. OFFICE SYMBOL ITS ADDRESS CID. State and ZIP Code. ACCORDESS CID. State and ZIP Code. ACCORDESS CID. State and ZIP Code. Chapel Hill, NC 27514 La NAME OF PERFORMING ORGANIZATION Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 La NAME OF PERFORMING Shorters and ZIP Code. AFOSR NN BACK CONTROL STATE AND ACCORDES SYMBOL INC CHAPELS SYMBOL INC. BACK CONTROL STATE AND ZIP CODE. BOILING AFB BOILING AFB	25. DECLASSIFICATION/DOWNGRADING	UNLIMITED The The First Hill a chas;					
A NAME OF PERFORMING ORGANIZATION Center for Stochastic Processes E. ACORESS CID. Just and AIP Code; Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 B. NAME OF PUNDING, PONSORING AFOSR A AFORESS CID. Just and AIP Code; B. ADDRESS CID. Just and AIP Code; A FOSR Just and AIP Code; B. ADDRESS CID. Just and AIP Code; B. ADDRESS CID. Just and AIP Code; B. ADDRESS ICID. Just and AIP Code; B. ADDRESS ICID. State and AIP Code; B. A	4 PERFORMING ORGANIZATION REPOR	AT NUMBER(S)	5. MONITORING OR	IGANIZATION RE	PORT NUMBER	S;	
Center for Stochastic Processes Center for Stochastic Processes Center for Stochastic Processes Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 Length Hill No. AFOSR Length Hill, NC 27514 Length Hill No. AFOSR Length Hill, NC 20332-6448 Length Hill No. AFOSR Length Hill AFOSR Length Hill No. AFOSR Length Hill AFOSR Length Hill Rough No. AFOSR Length Hill No. AFOSR Length Hill No. AFOSR	Technical Rept. No. 111		AFOSR	R-TR-	094	9	
Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 La NAME OF E-NOING SPONSORING JAGANIZATION AFOSR A	64 NAME OF PERFORMING ORGANIZAT	7a. NAME OF MONI	7a. NAME OF MONITORING ORGANIZATION				
Statistics Dept., 321 PH 039A, UNC Chapel Hill, NC 27514 Ballag 410 Balling AFB DC 20352-8448 Land OF CURING: SPONSORING AFOSR AFO	Center for Stochastic Pro-	cesses					
S. NAME OF FUNDING SPONSORING S. NAME OF FUNDING SPONSORING S. NAME OF FUNDING SPONSORING AFOSR AFOSR AGORESS (City, Size and ZIP Code) Bolling AFB W. ADORESS (City, Size and ZIP Code) Bolling AFB W. A	6c. ADDRESS City State and ZIP Code)				ie)		
Chapel Hill, NC 27514 BIG 11ing AFB DC 20332-8448 In NAME OF FUNDING SPONSORING AFORM AFOSR AFOSR AGORASS (Cir, State and ZIP Code) Bolling AFB Washington, DC 20332 In TITLE Include Security Classification REAL INVERSION FORMULAS FOR LAPLACE AND STIELTIES TRANSFORMS JOSEPH L. Teugels JOZEF L. Teugels JOZEF L. Teugels 130 TIME GOVERED TECHNICAL AUTHORIS) JOZEF L. Teugels 141 DATE OF REPORT (Yr., Mo., Day) 151 PAGE COUNT 161 SUPPLEMENTARY NOTATION 172 COSATI CODES FIELD GROUP SUB. OR. 183 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) The Supplementary Notation 194 ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 205 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNCLAIMTED & SAME AS APT DIFICUSERS DIRECTION UNCLASSIFICATION UNCLASSIFIED/UNCLAIMTED & SAME AS APT DIFICUSERS DIRECTION UNCLASSIFIED 210 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED UNCLASSIFIED 210 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED 211 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED UNCLASSIFIED 212 ARMA OF RESPONSIBLE INDIVIDUAL 213 DISTRIBUTION NUMBER 124 CAPPACE SYMBOL 125 PETERPHONE NUMBER 126 OFFICE SYMBOL 127 TELEPHONE NUMBER 128 CAPPICE SYMBOL 129 TELEPHONE NUMBER 120 OFFICE SYMBOL 120 DISTRIBUTION NUMBER 121 DISTRIBUTION NUMBER 122 CAPPICE SYMBOL 122 CAPPICE SYMBOL	Statistics Dept. 3						
LA NAME OF FUNDING SPONSORING AFOSR AFOSR AGADNESS (CIT), State and ZIP Code; Bolling AFB Washington, DC 20332 TITITLE (Include Security Classification) REAL INVERSION FORMULAS FOR LAPLACE AND STIELTUES TRANSFORM TECHNICAL SECURITY CLASSIFICATION ID. TIME COVERED TECHNICAL SECURITY CLASSIFICATION ID. TIME COVERED TECHNICAL SECURITY CLASSIFICATION ID. TIME COVERED TO 8/85 ID. DEPT OF REPORT (TY., Mo., Doy) ID. PAGE COUNT TO 8/85 ID. SUPPLEMENTARY NOTATION ID. SUPPLEMENTARY NOTATION TO COSATI COOES TIME SUPPLEMENTARY NOTATION ID. SUPPLEMENTARY NOTATION ID. SUPPLEMENTARY NOTATION TO COSATI COOES TIME SUPPLEMENTARY NOTATION ID. SUPPLEMENTARY NOTATION TO COSATI COOES TIME SUPPLEMENTARY NOTATION TO COSATI COOES			Bldg 410				
AFOSR	onaper mili, no 273	- ·	Bo'ling A	UFB DC 2033	2-6448		
AFOSR E ADDRESS (City, State and 21P Code) Bolling AFB Washington, DC 20332 10. TITLE linewas security Classification; REAL INVERSION FORMULAS FOR LAPLACE AND STIELTJES TRANSFORMS 12. PERSONAL AUTHORIS 13. TYPE OF REPORT 13. THE COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED & SAME AS APT. COTIC USERS C. 120. NAME OF RESPONSIBLE INDIVIDUAL 121. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED & SAME AS APT. COTIC USERS C. 122. NAME OF RESPONSIBLE INDIVIDUAL 123. NAME OF RESPONSIBLE INDIVIDUAL 124. COORDS 125. PUBLIC OF S. C.	8a. NAME OF FUNDING/SPONSORING ORGANIZATION	I				IUMBER	
Bolling AFB Washington, DC 20332 Bolling AFB Washington, DC 20332 BOLLINGERS (CHANGE SECURITY CHARMICSHOP) REAL INVERSION FORMULAS FOR LAPLACE AND STIELTJES TRANSFORMS JOZEF L. Teugels JOZEF COMERNO JOZEF		(1) 0551102012)	F4963	0-82-0	-0009		
Bolling AFB Washington, DC 20332 PROGRAM PROJECT NO. NO. NO.	Bc. ADDRESS (City, State and ZIP Code)						
REAL INVERSION FORMULAS FOR LAPLACE AND STIELTJES TRANSFORMS JOZEF L. Teugels JOZEF J. DATE OF REPORT (Yr. Mo., Day) JOZEF L. Teugels JOZEF J. DATE OF REPORT (Yr. Mo., Day) JOZEF L. Teugels JOZEF L. Teuge		2	PROGRAM	PROJECT	1		
REAL INVERSION FORMULAS FOR LAPLACE AND STIELTUES TRANSFORMS JOZEF L. Teugels JOZE			G1103F	2304	A5		
JOZEF L. TEUZELS JOZEF L. TEUZELS JOZEF L. TEUZELS JAL TYPE OF REPORT 136. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT technical FROM 9/84 TO 8/85 July 1985 16 SUPPLEMENTARY NOTATION TO COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED & SAME AS APT. OTICUSERS UNCLASSIFIED/UNLIMITED & SAME AS APT. OTICUSERS 222. NAME OF RESPONSIBLE INDIVIDUAL 222. NAME OF RESPONSIBLE INDIVIDUAL 222. TELEPPHONE NUMBER (Include Are Code).	11. TITLE Include Security Classification;	אים זאסן ארב אאים פיידב	THIE TOANCEADY	rs.			
JOZEF L. Teugels 13a. TYPE OF REPORT technical FROM 9/84 TO 8/85 July 1985 16 15. SUPPLEMENTARY NOTATION 17. COSATI CODES FROM 9/84 TO 8/85 July 1985 16 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FROM 9/84 TO 8/85 July 1985 16 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB. GR. Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED UNCLASSIFIED 22. TELEPHONE NUMBER (Include Area Code) (Include Area Code)		OR LAPLACE AND SITE	LIPES TRANSFORM	<u> </u>	<u> </u>	<u></u>	
technical FROM 9/84 TO 8/85 July 1985 16 16. SUPPLEMENTARY NOTATION 17. COSATI COOES FIELD GROUP SUB. CR. Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS APT. OTICUSERS INCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS APT. OTICUSERS INCLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL 22. TELEPHONE NUMBER (Include Are Code) 22. OFFICE SYMBOL (Include Are Code)	Jo						
12. COSATI CODES FIELD GROUP SUB.GR. 19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED & SAME AS APT. OTICUSERS OF UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL 223. TELEPHONE NUMBER (Include Are Code) 124. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Inversion formulas, Laplace transform, Stieltjes transform 24. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 25. TELEPHONE NUMBER (Include Are Code) 26. OFFICE SYMBOL			•				
12. COSATI CODES FIELD GROUP SUB. GR. Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identity by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED & SAME AS RPT. OTIC USERS OF UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL 222. TELEPHONE NUMBER (Include Area Code)		юм <u>9/84</u> то <u>8/85</u>	July 1985	_ July 1985			
Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED & SAME AS RPT. COTICUSERS C 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL 222. NAME OF RESPONSIBLE INDIVIDUAL 222. OFFICE SYMBOL (Include Area Code)	ID. SUFFICEMENTARY NOTATION		<u>.</u>		•		
Inversion formulas, Laplace transform, Stieltjes transform 19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED & SAME AS RPT. COTICUSERS C 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL 222. NAME OF RESPONSIBLE INDIVIDUAL 222. OFFICE SYMBOL (Include Area Code)	· · · · · · · · · · · · · · · · · · ·						
19. ABSTRACT (Continue on reverse if necessary and identify by block number) We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED & SAME AS APT. OTICUSERS UNCLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL 22. TELEPHONE NUMBER (Include Area Code)		T					
We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED E SAME AS APT. OTIC USERS UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL DO GROUP OF COMPANY 224. TELEPHONE NUMBER (Include Area Code) 226. OFFICE SYMBOL (Include Area Code)	FIELD GROUP SUB. GF	Inversion in	ormutas, Lapiace	e transform	, prietries	Cranstorm	
We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED E SAME AS APT. OTIC USERS UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL DO GROUP OF COMPANY 224. TELEPHONE NUMBER (Include Area Code) 226. OFFICE SYMBOL (Include Area Code)						•	
We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED E SAME AS APT. OTIC USERS UNCLASSIFIED 222. NAME OF RESPONSIBLE INDIVIDUAL DO GROUP OF COMPANY 224. TELEPHONE NUMBER (Include Area Code) 226. OFFICE SYMBOL (Include Area Code)	19. ABSTRACT (Continue on reverse if nec	essary and identify by block num	nber)				
UNCLASSIFIED/UNLIMITED & SAME AS APT. TO DTIC USERS TO UNCLASSIFIED 224. NAME OF RESPONSIBLE INDIVIDUAL DOI TO UNCLASSIFIED 225. TELEPHONE NUMBER (Include Area Code)	•	•		inversion	formulas fo	r the	
222. NAME OF RESPONSIBLE INDIVIDUAL 220. TELEPHONE NUMBER (Include Area Code) 220. OFFICE SYMBOL (Include Area Code)			·				
Briza W. Woodruff	20. DISTRIBUTION/AVAILABILITY OF	ABSTRACT	21. ABSTRACT SEC	URITY CLASSIF	ICATION		
			l l		ICATION		
DD FORM 14 72 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.	UNCLASSIFIED/UNLIMITED & SAME	AS APT. C OTIC USERS C	UNCLASSIF	IED	22c. OFFICE SY	MBOL	

SECURITY CLEED ICATION OF THIS PAGE

REAL INVERSION FORMULAS FOR LAPLACE AND STIELTJES TRANSFORMS

by

Jozef L. Teugels

Katholieke Universiteit te Leuven
and
University of North Carolina at Chapel Hill

Abstract

We provide probabilistic proofs for a number of real inversion formulas for the Laplace and for the Stieltjes transform.

Keywords: Inversion formulas, Laplace transform, Stieltjes transform

This research supported in part by the Air Force Office of Scientific Research, Contract No. F49620 82 C 0009, Center for Stochastic Processes, University of North Carolina, Chapel Hill, NC.

1. Introduction

Assume μ to be a bounded measure on $I\!\!R_{\!_+}.$ Let f be a kernel changing μ into the transformed function

(1)
$$g(t) := \int_{0}^{\infty} f(t,u)d\mu(u).$$

In the literature dealing with operational calculus the recovery of μ from g is mostly accomplished by complex inversion formulas. One knows that for a variety of integral transforms (i.e. Laplace, Stieltjes), real inversion formulas are available [6,10,12]. These formulas can also be obtained as applications of classical results from probability theory such as the weak law of large numbers and the central limit theorem.

To abbreviate the writing we put for 0 < y_1 < y_2 < ∞

(2)
$$\mu\{y_1, y_2\} = \frac{1}{2}\mu\{y_1\} + \mu(y_1, y_2) + \frac{1}{2}\mu\{y_2\}$$

2. Inversions using lattice variables

Let X be a non-negative lattice variable with mean u > 0 and finite variance $\sigma^2 > 0$. Take X_1, X_2, \ldots a sample from X. Define the sum

$$S_n(u) = X_1 + X_2 + ... + X_n, \quad n \ge 1$$

and put

$$d_n(u,t) = P\{S_n(u) \leq [nt]\}.$$

By the weak law of large numbers we know that $S_n(u)/n \neq u$ while $[nt]/n \rightarrow t$. Hence $d_n(u,t) \rightarrow 0$ if t < u, while $d_n(u,t) \rightarrow 1$ if t > u. For u = t note that $\{[nu] - nu\}/\sqrt{n} \rightarrow 0$ while

$$d_n(u,u) \approx P\left\{\frac{S_n(u) - nu}{\sigma\sqrt{n}} \le \frac{[nu] - nu}{\sigma\sqrt{n}}\right\} \to \frac{1}{2}$$

by the central limit theorem and the uniform convergence to the normal law [7, p. 139]. Hence

$$d_{n}(u,t) \rightarrow \begin{cases} 0 & t < u \\ \frac{1}{2} & t = u \\ 1 & t > u \end{cases}$$

By Lebesgue's theorem and (2) for 0 < y_1 < y_2 < ∞

(3)
$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \int_{0}^{\infty} \{d_n(u, y_2) - d_n(u, y_1)\} d\mu(u)$$

is a potential inversion formula.

Moreover by a local limit theorem [4, p. 225] or [1, p. 233]

(4)
$$h_{n}(u,t) := \sigma \sqrt{2\pi n} P\{S_{n}(u) = [nt]\} \rightarrow \begin{cases} 0 & t \neq u \\ 1 & t = u \end{cases}$$

By proper approximation (4) will suggest a function of the form

$$e_n(v) = ch_n(v,1) \rightarrow \begin{cases} 0 & v \neq 1 \\ 1 & v = 1 \end{cases}$$

for a constant c; this implies an inversion formula for the point mass at y, i.e.

(5)
$$\mu\{y\} = \lim_{n\to\infty} \int_0^\infty e_n(\frac{u}{y}) d\mu(y).$$

Before turning to examples let us introduce the abbreviation

$$(0 < y_1 < y_2 < \infty)$$

(6)
$$A_{n} = \{m: [ny_{1}] + 1 \le m \le [ny_{2}]\}.$$

Example 2.1. Poisson distribution and Laplace transform.

Put for the Laplace transform of μ ,

(7)
$$g(t) := \int_{0}^{\infty} e^{-tu} d\mu(u).$$

Then for $m \in \mathbb{N}$

(8)
$$(-1)^n g^{(n)}(t) = \int_0^\infty e^{-tu} u^n d\mu(u).$$

Let X be Poisson with mean u so that

$$d_{n}(u,t) = \sum_{m=0}^{[nt]} e^{-nu} \frac{(nu)^{m}}{m!}$$
.

By (2) and (3) we get

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \sum_{m \in A_n}^{\infty} \int_{0}^{\infty} e^{-nu} \frac{(nu)^m}{m!} d\mu(u)$$
$$= \lim_{n \to \infty} \sum_{m \in A_n} \frac{(-nu)^m}{m!} g^{(m)}(n).$$

This inversion formula can be found in [12, p. 295]. It can be fruitfully used in giving a probabilistic proof of Bernstein's theorem on completely monotone functions; see [2, p. 191].

For the point mass we get from (4)

$$h_n(u,t) = \sqrt{2\pi nu} e^{-nu} \frac{(nu)^{[nt]}}{[nt]!}$$
.

Stirling's formula easily yields c = 1 and

$$e_n(v) = \exp - n\{v - 1 + \log v\}.$$

Collecting results we get

Theorem 2.1. Let μ be a bounded measure and g(t) its Laplace transform. Then for $0 < y_1 < y_2 < \infty$

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \sum_{m \in A_n} \frac{(-nu)^m}{m!} g^{(m)}(n);$$

and for $0 < y < \infty$

$$\mu\{y\} = \lim_{n\to\infty} \left(-\frac{e}{y}\right)^n g^{(n)} \left(\frac{n}{y}\right).$$

The latter formula occurs also in [12, p. 298].

Example 2.2. Pascal distribution and Stieltjes transform.

In the sequel we also deal with the (generalized) Stieltjes transform.

(9)
$$\phi_{p}(t) := \int_{0}^{\infty} (u + t)^{-p} d\mu(u)$$

where p > 0.

In evaluating successive derivatives of $\boldsymbol{\phi}_p$ the next lemma will be useful.

Lemma 2.2. For a, $c \in \mathbb{N}$, $-p \notin \mathbb{N}_0$, u > 0, t > 0

$$(10) D^{a}\{t^{b}D^{c}(u+t)^{-p}\} = \frac{\Gamma(p+a+c)}{\Gamma(p)}(-1)^{a+c}t^{b}(u+t)^{-p-a-c}F(-a,-b,-p-a-c+1;\frac{u+t}{t});$$

in particular

$$(11) \quad D^{a}\{t^{p+a+c-1}D^{c}(u+t)^{-p}\} = \frac{\Gamma(p+a+c)}{\Gamma(p)}(-1)^{c}t^{p+c-1}u^{a}(u+t)^{-p-a-c}.$$

<u>Proof.</u> Apply Leibniz's rule for differentiation of products; and then, for $\alpha \in \mathbb{N}$

$$F(-\alpha,-\beta,-\gamma;x) = \sum_{m=0}^{\alpha} \frac{\binom{\alpha}{m}\binom{\beta}{m}}{\binom{\gamma}{m}} (-x)^{m}.$$

To prove (11), note that $F(-\alpha,\gamma,\gamma;x) = (1-x)^{\alpha}$ if $\alpha \in \mathbb{N}$ by [5, p. 1040]. \square Let X be geometric with mean u. Then

$$d_n(u,t) = \sum_{m=0}^{[nt]} {n+m-1 \choose m} p^m (1-p)^n$$

where $u = EX = \frac{1-p}{p}$ or $p = (u + 1)^{-1}$. For the point mass we note that

$$h_n(u,t) = \sigma \sqrt{2\pi n} {n+m-1 \choose m} \frac{u^m}{(1+u)^{n+m}}$$

where m = [nt]. Stirling's formula again applies to yield

(12)
$$e_n(v) = (\frac{2\sqrt{v}}{1+v})^{2n}$$

Theorem 2.3. Let μ be a bounded measure and $\varphi_1(t)$ its (ordinary) Stieltjes transform. Then for 0 < y_1 < y_2 < \infty

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \frac{1}{\Gamma(n)} \sum_{m \in A_n} \frac{1}{m!} D^n \{t^{n+m-1}(-D)^{m-1} \phi_1(t)\}_{t=1}$$

$$= \lim_{n\to\infty} \frac{1}{\Gamma(n)} \sum_{m\in A_n} \frac{(-1)^{m-1}}{m!} D^{n+m-1} \{t^n \phi_1(t)\}_{t=1};$$

for $0 < y < \infty$,

$$\mu\{y\} = \lim_{n \to \infty} \frac{2^{2n}y}{\Gamma(2n)} D^{n} \{y^{2n-1}(-D)^{n-1} \phi_{1}(y)\}.$$

<u>Proof.</u> From (3) and the current choice of d_n we find

$$\mu\{y_1; y_2\} = \lim_{n\to\infty} \sum_{m\in A_n} {n+m-1 \choose m} \int_0^{\infty} \frac{u^n}{(u+1)^{m+n}} d\mu(u).$$

Put a = n, b = n + m - 1, c = m - 1, p = 1 in (11) to find the first

formula. To get the second, put a = n + m - 1, b = n, c = 0, p = 1 in (10) and recall that F(a,b,c;x) = F(b,a,c;x).

For the point mass we get from (5) and (12)

$$\mu\{y\} = \lim_{n\to\infty} (4y)^n \int_0^{\infty} \frac{u^n}{(u+y)^{2n}} d\mu(u).$$

So we take a = n, b = 2n - 1, c = n - 1 and p = 1 in (11).

Example 2.3. Binomial distribution and Stieltjes transform.

Let X be Bernoulli on 0 and 1 so that

$$P\{X = k\} = \begin{cases} 1 - v & k = 0 \\ v & k = 1. \end{cases}$$

Then

$$P\{S_n(v) \leq [nt]\} = \sum_{\ell=0}^{[nt]} {n \choose \ell} v^{\ell} (1 - v)^{n-\ell}$$

suggests a potential inversion. However we should adapt it so that v $\in \mathbb{R}_+$ rather than v \in [0.1]. So define

$$d_n(u,t) = \sum_{\ell=0}^{\lfloor n/(1+t)\rfloor} {n \choose \ell} u^{n-\ell} (1+u)^{-n}.$$

Theorem 2.4. Let μ be a bounded measure and $\varphi_1(t)$ its (ordinary) Stieltjes transform. Then for 0 < y_1 < y_2 < \infty

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \sum_{\ell \in B_m} \frac{1}{(n-1)!} \binom{n}{\ell} D^{n-\ell} \{t^{n-1}(-D)^{\ell-1} \phi_1(t)\}_{t=1}$$

$$= \lim_{n\to\infty} \sum_{\ell\in B_m} \frac{1}{(n-1)!} {n\choose \ell} D^{n-1} \{t^{n-\ell} \phi_1(t)\}_{t=1},$$

where
$$B_m = \{\ell : [\frac{n}{y_2+1} + 1] \le \ell \le [\frac{n}{y_1+1}] \}$$
.

The proof is basically the same as that of the previous theorem.

3. Inversions using also densities

Let X_1, X_2, \ldots be a sequence of independent non-negative random variables with common distribution F, mean 1 and finite variance. Let also Y_1, Y_2, \ldots be such a sequence but with distribution G, and independent of the sequence $\{X_i\}$.

Define $S_n = X_1 + ... + X_n$ and $T_n = Y_1 + ... + Y_n$ and look at

$$d_{n}(u) = P\{S_{n}/T_{n} \le u\};$$

by combining a weak law and the central limit theorem, one easily finds that

$$d_{n}(u) = \int_{0}^{\infty} F^{(n)}(ut)dG^{(n)}(t) \rightarrow \begin{cases} 0 & u < 1 \\ \frac{1}{2} & u = 1 \\ 1 & u > 1 \end{cases}$$

where $F^{(n)}(G^{(n)})$ is the n-fold convolution of F(G) with itself. The particular case where Y_i = 1 is important and yields $d_n(u) = F^{(n)}(nu)$.

The potential inversion formula reads now

(13)
$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \int_{0}^{\infty} \{d_n(\frac{u}{y_1}) - d_n(\frac{u}{y_2})\} d\mu(u)$$

while a point mass formula can be derived by using

$$e_n(v) = \frac{c}{\sqrt{n}} vd_n'(v)$$

if d_n is absolutely continuous.

Example 3.1. Exponential distribution and Laplace transform.

Here $Y_i = 1$ and X_i has an exponential density with mean 1. Hence

(14)
$$d_n(u) = \frac{1}{\Gamma(n)} \int_0^{nu} e^{-v} v^{n-1} dv$$

and so we have

Theorem 3.1. Let μ be a bounded measure and g(t) its Laplace transform. Then for 0 < y_1 < y_2 < \infty

(15)
$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \int_{y_1}^{y_2} \frac{(-n)^n}{\Gamma(n)} \frac{g^{(n)}(\frac{n}{t})}{t^{n+1}} dt.$$

Proof. From (13) and (14) we see that

$$\mu\{y_{1}; y_{2}\} = \lim_{n \to \infty} \int_{0}^{\infty} d\mu(u) \int_{\text{nuy}_{2}}^{\text{nuy}_{1}-1} \frac{1}{\Gamma(n)} e^{-v} v^{n-1} dv$$

$$= \lim_{n \to \infty} \int_{y_{1}}^{y_{2}} \frac{(-n)^{n}}{\Gamma(n)} \frac{dt}{t^{n+1}} \int_{0}^{\infty} e^{-u} \frac{n}{t} (-u)^{n} d\mu(u)$$

by Fubini's theorem.

The point mass formula coincides with that of th. 2.1.

The appealing form of (15) suggests that if the sequence

$$k_n(t) := \frac{(-n)^n}{\Gamma(n)} \frac{g^{(n)}(\frac{n}{t})}{t^{n+1}}$$

converges a.e. on $I\!\!R_+$ and is bounded by an $L_1^{}-$ function then μ is absolutely continuous and its derivative is given by the inversion

(16)
$$\frac{d\mu}{dt} = \lim_{n \to \infty} \frac{(-n)^n}{\Gamma(n)} \frac{g^{(n)}(\frac{n}{t})}{t^{n+1}}.$$

The inversion formula (16) is well known [6,12]; its probabilistic proof due to Feller [3] has been the inspiring source for the current paper. Formula (16) has been used by Jagerman [9] to perform numerical inversion of the Laplace transform. For other applications see a paper by Vinogradov [13].

Example 3.2. Exponential distributions and Stieltjes transform.

Let $F(x) = G(x) = 1 - e^{-x}$; then $d_n(u)$ turns out to be a beta distribution on \mathbb{R}_+ , i.e.

$$d_n(u) = \frac{\Gamma(2n)}{\Gamma^2(n)} \int_0^u \frac{v^{n-1}}{(1+v)^{2n}} dv.$$

Theorem 3.2. Let μ be a bounded measure and $\phi_1(t)$ be its (ordinary) Stieltjes transform. Then for 0 < y₁ < y₂ < ∞

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \frac{1}{\Gamma^2(n)} \int_{y_1}^{y_2} D^n \{t^{2n-1}(-D)^{n-1} \phi_1(t)\} dt$$

$$= \lim_{n \to \infty} \frac{(-1)^{n-1}}{\Gamma^2(n)} \int_{y_1}^{y_2} t^{n-1} D^{2n-1} \{t^n \phi_1(t)\} dt;$$

for $0 < y < \infty$

$$\mu\{y\} = \lim_{n \to \infty} \frac{(-4y)^n}{\Gamma(2n)} D^{2n-1}\{y^n \phi_1(y)\}.$$

Proof. We easily get

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \frac{\Gamma(2n)}{\Gamma^2(n)} \int_{y_1}^{y_2} t^{n-1} dt \int_{0}^{\infty} \frac{u^n}{(u+t)^{2n}} d\mu(u).$$

We get the two formulas by applying lemma 2.2 with the two choices

$$a = n, b = 2n - 1, c = n - 1, p = 1$$
 in (11)

$$a = 2n - 1$$
, $b = n$, $c = 0$, $p = 1$ in (10)

as in the proof of th. 2.3.

For the point mass we get \mathbf{e}_n as in (12); the resulting formula comes from the second choice above.

For the above formulas see [12, p. 350]. For applications, see [8].

The last example shows how an almost trivial probabilistic argument widens the applicability of the previous examples.

Example 3.3. Exponential distributions and generalized Stieltjes transforms.

Return to the previous example but look at S $_{n+b}$ and T $_{n+a+p}$ instead of S $_n$ and T $_n$ where a,b ϵ ZZ are fixed. Then

$$\lim_{n\to\infty} P\left\{\frac{s_{n+b}}{T_{n+a+p}} \le u\right\} = \lim_{n\to\infty} P\left\{\frac{s_{n}}{T_{n}} \le u\right\}.$$

Hence we have another candidate for d_n , i.e.

$$d_{n}(u) = \frac{\Gamma(2n+a+b+p)}{\Gamma(n+a+p)\Gamma(n+b)} \int_{0}^{u} \frac{v^{n+b-1}}{(1+v)^{2n+a+b+p}} dv.$$

By the usual procedure we obtain also

$$e_n(v) = v^{\frac{b-a-p}{2}} \{\frac{2\sqrt{v}}{1+v}\}^{2n+a+b+p}.$$

If we now go through the same routine as in example 3.2 with a replaced by n + b and c by n + a we obtain the following results of E.R. Love and A. Byrne [10,11]. We note that we have to restrict p to \mathbb{N}_0 in view of the

probabilistic set up.

Theorem 3.3. Let μ be a bounded measure; let $\phi_p(t)$ be its generalized Stieltjes transform. Let a,b ϵ Z. Then for 0 < y₁ < y₂ < ∞

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \frac{\Gamma(p)}{\Gamma(n+a+p)\Gamma(n+b)} \int_{y_1}^{y_2} D^{n+b}\{t^{2n+a+b+p-1}(-D)^{n+a} \phi_p(t)\} dt;$$

for $0 < y < \infty$

$$\mu\{y\} = \lim_{n\to\infty} \frac{2^{2n+a+b+p}\Gamma(p)}{\Gamma(2n+a+b+p)} yD^{n+b}\{y^{2n+a+b+p-1}(-D)^{n+a}\phi_p(y)\}.$$

Note that by using different random variables one can get a variety of real inversion formulas for the same Stieltjes transform ϕ_1 . Needless to point out how th. 3.2 follows from the last result.

Remarks.

- The main drawback of the method used in this paper is that the relevant integral transform has to be recovered from a potential inversion formula.
- The main virtue of the paper lies in singling out the relevance of the asymptotic behavior of the sequence d_n for $n \to \infty$; probabilistic arguments often provide this behavior immediately.
 - There exist additive counterparts for the formula (13).

$$d_{n}(v) \rightarrow \begin{cases} 0 & v < 0 \\ \frac{1}{2} & v = 0 \\ 1 & v > 0 \end{cases}$$

where $v \in I\!\!R$, then a potential inversion formula for a transform on $I\!\!R$ is

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \int_{\mathbb{R}} \{d_n(u - y_1) - d_n(u - y_2)\} d\mu(u).$$

The best known example is $d_n(v) = \frac{1}{\pi} \int_{-\infty}^{nv} \frac{\sin u}{u} du$ leading to the inversion formula for the Fourier transform

$$\mu\{y_1; y_2\} = \lim_{n \to \infty} \int_{y_1}^{y_2} dx \{ \frac{1}{2\pi} \int_{-n}^{n} e^{-izx} \phi(z) dz \}$$

where $\phi(z) = \int_{\mathbf{R}} e^{\mathbf{i}zu} d\mu(u)$.

Another example is $d_n(v) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\sqrt{n}v} e^{-\frac{1}{2}x^2} dx$ leading to a real inversion formula for the Gauss-Weierstrasz transform [6]

$$w_{\lambda}(t) = \sqrt{\frac{t}{2\pi}} \int_{-\infty}^{\infty} \exp -\frac{\lambda}{2} (u - t)^2 d\mu(u).$$

References

- [1] BREIMAN, L.: Probability, Addison-Wesley, Reading Mass., 1968.
- [2] CHUNG, K.L.: A Course in Probability Theory, 2d. ed. Academic Press, New York, 1974.
- [3] FELLER, W.: An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971.
- [4] GNEDENKO, B.V. & KOLMOGOROV, A.N.: Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Mass., 1968.
- [5] GRADHSTEIN, I.S. & RYZHIK, I.M.: <u>Tables of Integrals</u>, <u>Series</u>, and <u>Products</u>, Academic Press, New York, 1975.
- [6] HIRSCHMAN, I.I. & WIDDER, D.V.: The Convolution Transform, Princeton Univ. Press, Princeton, New Jersey, 1955.
- [7] IBRAGIMOV, I.A. & LINNIK, Y.V.: <u>Independent and Stationary Sequences</u> of Random Variables, Noordhoff, Groningen, 1971.
- [8] ISMAIL, M.E.H.: Bessel functions and the infinite divisibility of the Student t-distribution, Ann. Probability, 1977, 5, 582-585.
- [9] JAGERMAN, D.L.: An inversion technique for the Laplace transform with application to approximation, Bell System Tech. J., 1978, <u>57</u>, 669-710.
- [10] LOVE, E.R. & BYRNE, A.: Real inversion theorems for generalized Stieltjes transforms, J. London Math. Soc., (2), 1980, 22, 285-306.
- [11] LOVE, E.R. & BYRNE, A.: Real inversion theorems for generalized Stieltjes transforms II, Math. Proc. Camb. Phil. Soc., 1982, 92, 275-291.
- [12] WIDDER, D.V.: The Laplace Transform, Princeton Univ. Press, Princeton, New Jersey, 1946.
- [13] VINOGRADOV, O.P.: On applications of an inversion formula for the Laplace transform, Th. Probability Appl., 1979, 21, 836-839.

END

FILMED

1-86

DTIC